

Last update: 02/02/2023

Version: 4.6

NAVISUITE DEEP LEARNING (NSDL)

INSTRUCTIONS TO USE THE RACK SERVER

Page 2 of 12

Contents

1 Prerequisites ... 3

2 Setup of the NaviSuite Deep Learning rack server ... 3

3 Setup on the client pc .. 4

4 Customer trained model in NaviSuite Deep Learning server 9

4.1 Model requirements.. 9

4.2 Upload model into NaviModel .. 11

DeepLearning_Instructions_To_Use_Rack_Server.docx

Last update: 02/02/2023
Page 3 of 12

1 Prerequisites

NaviSuite Deep Learning products:

Figure 1 EIVA’s NaviSuite Deep Learning products

• 1x 19” rack NaviSuite Deep Learning – Rack Server (for Automatic Eventing)

• 1x NaviSuite Deep Learning – Onboard Computer running as client computer

• Licence file for the server pc
o The network id (example: 123abcde123a12ab) is shipped to the client on a

piece of paper with the rack server. Every person who has the network id
can use the NaviSuite Deep Learning server to upload models. It requires
the NaviModel Pro licence.

• NaviSuite Deep Learning – Pipeline Inspection licence file for the client pc

2 Setup of the NaviSuite Deep Learning

rack server

The NaviSuite Deep Learning Server is designed to work out of the box, in other words it is

configured already and can be used as is. Neither monitor nor other input devices or

peripherals are required.

1. Place the server where you want it

• It is recommended to use the supplied rack ears and rails to mount it in a

19” rack

2. Connect it with an Ethernet cable to a local area network (LAN)

• It is not possible to connect via WiFi at this point

Page 4 of 12

3. Insert the power supply

4. Power it on. There are two power buttons on the rack server, use the one on the

rear side

Note: It is advisable to leave the server computer running 24/7

3 Setup on the client pc

1. Download and install NaviModel Producer from https://download.eiva.com/

2. Enter the EIVA licence using either the nine digit licence key or WibuKey (USB like

dongle)

3. Optionally download and install the ZeroTier client from

https://www.zerotier.com/download/

(No need for registration). This is used for trouble-shooting the setup.

4. Start ZeroTier and find it in the Windows taskbar

Figure 2 ZeroTier software in the Windows taskbar

5. Click Join New Network and enter the id that you got from your EIVA

representative

Figure 3 ZeroTier option Join New Network

https://download.eiva.com/
https://www.zerotier.com/download/

DeepLearning_Instructions_To_Use_Rack_Server.docx

Last update: 02/02/2023
Page 5 of 12

Figure 4 ZeroTier option Join ZeroTier Network

Figure 5 ZeroTier with connected network

Page 6 of 12

6. Start NaviModel from the desktop shortcut

7. Add a Log Window (CTRL+L) and type deeplearning

Figure 6 NaviModel Add Log Window option

Figure 7 Enabling NaviSuite Deep Learning

DeepLearning_Instructions_To_Use_Rack_Server.docx

Last update: 02/02/2023
Page 7 of 12

8. Click the Connect button

Figure 8 NaviModel Producer showing the Connect button

9. Select the server EIVARack

Figure 9 EIVARack server

Page 8 of 12

10. Click Connect

Figure 10 NaviModel connected to the server

• The server is visible in NaviModel Project Tree

• Click the dot to the right to see the status (red in Figure 10 NaviModel connected to

the server and 11, green in Figure 12)

Figure 11 Red dot showing the connection is not established

Figure 12 The green dot showing that connection to the NaviSuite Deep Learning server is

established

DeepLearning_Instructions_To_Use_Rack_Server.docx

Last update: 02/02/2023
Page 9 of 12

4 Loading a customer trained model onto

the NaviSuite Deep Learning Rack Server

for Automatic Eventing

The NaviSuite Deep Learning Rack Server for Automatic Eventing enables the client to

run their own models on the NaviSuite Deep Learning Rack Server.

This part of the document describes how to upload a customer trained model.

A customer trained model with complying signatures and format is required.

4.1 Model requirements

We use Tensorflow Serving for serving our models. To comply with automatic eventing in

NaviSuite DeepLearning, your trained model must have the correct signatures, input and be

bundled correctly.

To help you further see also the attached zipped folder (model2savedmodel.zip, consists

of two files, model2savedmodel.py and requirements.txt) is a script for aiding how to train

a model which complies with the expected format.

Steps:

1. Load a trained tf2 classification model
2. Add image decoding and resizing layers to the input
3. Embed the class names to include in outputs
4. Wrap it with a classification signature describing input and outputs
5. Write it to a SavedModel ready for serving with

https://www.tensorflow.org/tfx/guide/serving.

https://www.tensorflow.org/tfx/guide/serving

Page 10 of 12

Example script model2savedmodel.py (Python):
import os
import tensorflow as tf

"""
model2savedmodel.py

Basic example script to
 A) load a trained tf2 classification model (here a tf.keras.Model instance),
 B) add image decoding and resizing layers to the input,
 C) embed the class names, to include in outputs,
 D) wrap it with a 'classification' signature describing input and outputs,
 E) and write it to a SavedModel ready for serving with https://www.tensorflow.org/tfx/guide/serving.

Note: tf models may be written to SavedModels in several different ways. Feel free to follow another path
- but please see and replicate the decoding and resizing layers added by this example.

Author: mim@eiva.com 2023-01-02
"""

def model2savedmodel(
 kerasModel, classes=["Class1", "Class2", "Class3"], input_shape=[288, 512],
savedmodel_dir="example_savedmodel_dir", savedmodel_version=1
):
 if input_shape[0] > input_shape[1]:
 print(
 "[Warning] Height of input images exceed the width. \
 That is probably not, what you want!"
)
 output_path = os.path.join(savedmodel_dir, str(savedmodel_version))

 class ModelModule(tf.Module):
 def __init__(self, model, classes):
 self.model = model
 self.classes = tf.constant(classes)

 @tf.function(input_signature=[tf.TensorSpec(shape=(None), dtype=tf.string)])
 def classification(self, images_encoded):
 # decode
 images_decoded = tf.map_fn(
 self.decode, images_encoded, dtype=tf.uint8, name="images_decoded"
)
 # resize
 images_resized = tf.image.resize(
 images_decoded,
 (input_shape[0], input_shape[1]),
 method=tf.image.ResizeMethod.BILINEAR,
)

 # If your model need any other preprocessing not defined in kerasModel, do it now...

 class_prob, _ = self.model((images_resized, False)) # Your kerasModel arguments and outputs
can be different!

 # If your model need any postprocessing not defined in your kerasModel, do it now...

 classes_repeated_for_batch = tf.tile(tf.reshape(self.classes, [1, -1]),
 [images_encoded.shape[0], 1])
 return {
 "classes": classes_repeated_for_batch,
 "probabilities": class_prob
 }

 @staticmethod
 def decode(image_buffer):
 """Decode JPEG/PNG/GIF encoded byte string"""
 image = tf.io.decode_image(image_buffer, channels=input_shape[2])
 image.set_shape([None, None, int(input_shape[2])])
 return image

DeepLearning_Instructions_To_Use_Rack_Server.docx

Last update: 02/02/2023
Page 11 of 12

 signatures = {
 "classification": module.classification,
 # "segmentation": module.segmentation,
 # "objectdetection": module.objectdetection
 }
 module = ModelModule(kerasModel, classes)
 tf.saved_model.save(module, output_path, signatures=signatures)

4.2 Upload model into NaviModel

First ensure that your model is bundled as this (folder structure):

• When a custom model needs to be uploaded onto the server, the structure of the

model folder should be:

Figure 13 Zipped folder structure of the Model that you want to upload to the server

• The model to be uploaded should be a .ZIP compressed folder.

• The NaviSuite Deep Learning rack server has a built security feature: you must be
on the same network as the rack server. Uploading custom models should only be
done within the same network. If you are in doubt, ask your IT-administrator.

• Open NaviModel Producer, enable deeplearning, connect to the deeplearning
server as described in chapter 3.

• Right-click on the server and select Create/upload new Model to Server

Page 12 of 12

Figure 14 NaviModel Upload new Model to Server

